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Abstract

Regional decadal predictions have emerged in the past few years as a research field
with high application potential, especially for extremes like heat and drought periods.
However, up to now the prediction skill of decadal hindcasts, as evaluated with standard
methods is moderate, and for extreme values even rarely investigated. In this study, we5

use hindcast data from a regional climate model (CCLM) for 8 regions in Europe to
construct time evolving climate networks and use the network correlation threshold
(link strength) as a predictor for heat periods. We show that the skill of the network
measure to predict the low frequency dynamics of heat periods is similar to the one of
the standard approach, with the potential of being even better in some regions.10

1 Introduction

Decadal prediction is a relatively new field in climate research. Skillful prediction of
climate from years up to a decade would be beneficial for our society, economy and
for a better adaption to a changing climate. Within the large international CMIP5
project (Coupled Model Intercomparison Project Phase 5, Taylor et al., 2012) global15

decadal predictions of climate key variables like temperature and precipitation have
been performed with state-of-the-art Earth system models. In order to validate the
prediction skill of the models so called hindcast experiments are conducted. That
means, the models are initialized with observations e.g. in 1961 and then run freely for
10 years and stop at the end of 1970. In 1971, the models are again initialized and start20

to run for another 10 years and so on. More advanced approaches of initializing every
year have been also followed. These hindcasts can be evaluated against observational
data to quantify the prediction skill of the models depending on the lead time, which
is the time range between the initialization and the forecast datum of interest. In
recent years, several studies on decadal predictions have shown the potential of these25

initialized (global) model runs (e.g. Keenlyside et al., 2008; Müller et al., 2012; Matei
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et al., 2012; van Oldenborgh et al., 2012; Corti et al., 2012; Doblas-Reyes et al.,
2013; García-Serrano et al., 2013; Smith et al., 2013; Meehl et al., 2014; Chikamoto
et al., 2015). However most studies concentrate on regions like the Tropical Pacific or
North Atlantic and on slowly evolving variables like sea-surface temperature. These
regions receive their predictability from large scale processes like the AMOC (Atlantic5

Meridional Overturning Circulation) or PDO (Pacific Decadal Oscillation) and thus allow
to extract predictable signals out of the noise. To be useful for society, and climate
change adaption, regional climate predictions are required which should provide skillful
forecasts on smaller regions, shorter periods, and include climate extreme events on
populated land areas like the European continent. The European climate is more10

connected to short term processes like NAO (North Atlantic Oscillation), which is
to a certain extent predictable on seasonal scales, whereas the decadal predictable
signal is weak (Scaife et al., 2014), which has been shown also for temperature and
precipitation in large projects like ENSEMBLES (MacLeod et al., 2012). Further, the
complex orography with the Alps in the center contribute to a manifold of general15

weather situations and hence to a complex climate (e.g. CORDEX-EU, Jacob et al.,
2013; Giorgi et al., 2009). Nevertheless, the European continent is influenced by the
AMOC and thus this process may yield to a certain predictability, although the signal
to noise ratio is most probably small. Up to now, the prediction skill for Europe is
weaker than for such regions as the South Pacific or North Atlantic. Mieruch et al.20

(2014) have used a regional decadal hindcast ensemble for Europe and detected
moderate prediction skill for summer and winter temperature and summer precipitation
anomalies in the order of five years. Eade et al. (2012) analyzed the predictability of
temperature and precipitation extremes in a global model and found a moderate but
significant skill (correlation) for seasonal extremes. They also find skill beyond the first25

year, but this skill arises from external forcing. Thus, Eade et al. (2012) compared
initialized climate predictions with uninitialized projections to evaluate the skill gained
by initializing and excluding the external forcing. They found that the “... impact of
initialization is disappointing”.
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On the other hand an innovative approach in climate research has been established
in the recent years, namely the complex climate network approach.

The general idea of climate networks is to consider climate time series e.g. at the
grid points of a climate model as nodes of the network and the statistical connection
between the time series as links of the network. A link between two arbitrary time series5

(geolocations) exists, if the correlation measure between the time series exceeds
a certain threshold.

The climate network community has been very active in recent years. Tsonis
et al. (2007) proposed “A new dynamical mechanism for major climate shifts” and
explained e.g. decadal shifts in global mean temperature (Tsonis and Swanson, 2012).10

Radebach et al. (2013) discriminate different El Niño types using the network approach,
Ludescher et al. (2013) developed a network method to improve El Niño forecasting
and Donges et al. (2011) revealed a connection between (paleo-) climate variability
and human evolution using recurrence-networks, which are similar to the complex
climate networks. Generally, it has been shown that climate networks contain useful15

information for climate applications, e.g. the relation between climate and topography
found by Peron et al. (2014), dynamics of the sun activity using visibility graphs (Zou
et al., 2014) and the prediction of extreme floods Boers et al. (2014).

Extremes like heat periods are defined as events which coherently exceed
a threshold over a certain time-space domain. From a complex network perspective20

the node degree describes correlation (above a threshold) of data also on a time-space
domain. Therefore, the area averaged node degree and thus the link strength could be
an indicator for extreme events like heat periods. In this paper, we exploit this idea and
show that its skill is similar to the skill of the standard approach and has the potential
to improve the prediction of heat periods on time scales up to a decade.25

In Sect. 2 we introduce the daily maximum temperature data used in this study.
Section 3 describes our approach, which includes the preparation of the data, the
definition of heat periods and the construction of time evolving climate networks. The
results, shown in Sect. 4, indicate that the network measure is equally skillful as the
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standard approach and in some regions in Europe can be the better estimator of heat
periods. Finally, we give the conclusions and an outlook in Sect. 5.

2 Data

We apply the climate network approach to a decadal prediction ensemble generated
within the German research project MiKlip. The regional climate model COSMO-CLM5

(Consortium for small scale modeling in climate mode), called CCLM hereafter is
described in Doms and Schättler (2002). CCLM has been used in numerous studies
recently e.g. in Kothe et al. (2014); Dosio et al. (2015), a comprehensive overview
can be found here: http://www.clm-community.eu. CCLM has been used to downscale
global decadal predictions from the MPI-ESM (Stevens et al., 2013) global model.10

From a suite of different decadal prediction experiments we have selected the so-
called regional baseline 0 ensemble. This ensemble consists of 10 members each,
covering the period 1961–2010 for the European region (according to CORDEX-EU
Jacob et al., 2013; Giorgi et al., 2009) on a 0.22◦ grid. This ensemble has already been
used by Mieruch et al. (2014).15

The regional baseline 0 ensemble (based on the global MPI-ESM model) has been
initialized every 10 years (1961, 1971, 1981, 1991, 2001). Within a decade the CCLM
model runs freely, except for the prescription of the atmospheric boundary conditions
by the global MPI-ESM model.

More details on the development of the ensemble and the initialization can be found20

in Matei et al. (2012), Müller et al. (2012), Mieruch et al. (2014).
In the study presented here we use daily maximum near-surface temperatures from

the CCLM model and from the E-OBS v8.0 gridded climatology (Haylock et al., 2008)
for the European continent.

For our comparison, we use the so-called Prudence regions http://prudence.dmi.dk/,25

namely British Isles, Iberian Peninsula, France, Central Europe, Scandinavia, Alps,
Mediterranean and Eastern Europe shown in Fig. 1.
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3 Method

Our hypothesis is that complex network measures may be complementary or even
better estimators for climate extremes than standard measures like absolute threshold
exceedances.

As mentioned before, we use the case of heat periods to illustrate the method.5

The standard estimator for heat periods according to the WMO is that the daily
maximum temperature is 5K above the 1961–1990 mean maximum temperature at
five consecutive days at least (Frich et al., 2002). Thus, the standard approach would
be to count the heat periods e.g. for each year in an observational reference data set
and similarly in the model data, both according to the WMO definition.10

As an alternative heat period estimator, we propose to use the time varying link
strength Wτ (τ represents the years) of a network, based on modeled daily maximum
temperature time series. The link strength Wτ is the correlation threshold between time
series, which is needed to construct a network of a given edge density (more details
below). Accordingly we want to show thatWτ has the potential to be at least as good as,15

or even a better estimator for observational heat periods than the standard estimator.
This approach is similar to that used by Ludescher et al. (2013), who forecasted El Niño
events using the link strength of a network and showed the superiority to standard sea
surface temperature predictions by state-of-the-art climate models.

Figure 2 illustrates the motivation schematically, assuming that one heat period has20

actually occurred, and assuming that the model has a certain prediction skill to detect
the signal out of the noise. Figure 2a depicts that using the standard approach the
model correctly detects one heat period above the threshold. In Fig. 2b the model
detects a signal, but this signal is too weak to cross the threshold, thus no heat period
would have been detected and the model underestimates the number of heat periods.25

Overestimation of the number of heat periods happens in Fig. 2c, where the model
detects two heat periods (5 days above the threshold). A heat period constitutes an
event in space and time, thus in a certain region, many time series would look like the

1486

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1481/2015/npgd-2-1481-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1481/2015/npgd-2-1481-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1481–1505, 2015

Climate networks

M. Weimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ones in Fig. 2. Now, the link strength of a network would be given by the correlation
between these coherent time series. Generally, the signals in Fig. 2a–c look quite
similar and the link strength of the network would thus be very similar in all three cases.
Whereas the standard approach would correctly predict the heat period in only one
case (Fig. 2a), the networks link strength would correctly predict the heat period in all5

three cases, given a proper relation between link strength and heat periods.
To test the relation in principle, we created 100 artificial time series (Gaussian noise)

and included successively 0–9 heat periods. Figure 3a shows such a time series
with three artificial heat periods indicated by the dashed lines. In a following step, we
calculated the mean correlation (link strength) between these 100 coherent time series10

dependent on the number of included heat periods depicted in Fig. 3b. As can be seen,
the relation is nearly linear, thus more heat periods are connected with a larger link
strength. Note that Fig. 3b is not a calibration curve for real data, because we simply
used Gaussian noise to create the time series.

It is clear that the argumentation above concerning the link strength as a heat period15

estimator is quite simplistic, but it elucidates our approach and the main idea.
To apply the method we proceed as follows. Suppose we have initialized our climate

model in the year 2001 with the ocean, soil, ice and atmospheric state at that time.
Accordingly the climate model runs freely for 10 years, i.e. a retrospective decadal
climate prediction. Now we are interested in the capability of the model to represent20

heat periods in summer. Based on the standard approach of counting heat periods,
according to the WMO definition, we could determine the prediction skill of the model
in forecasting (hindcasting) the number of heat periods. Our approach, in contrast, is to
create a time-evolving complex network with fixed edge density (Berezin et al., 2012;
Radebach et al., 2013; Ludescher et al., 2013; Hlinka et al., 2014) from the modeled25

daily maximum temperature time series and use, as mentioned, the dynamics of the
link strength Wτ as a heat period estimator.

Before using the complex network approach it is necessary to remove the stationary
biases and variabilities from the climate time series (Donges et al., 2009).
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We remove the bias, trend and the average annual cycle by subtracting a standard
linear regression including a Fourier series from the time series:

yi (t) = µi +ωi t+
2∑
j=1

αi ,j sin
(

2πj · t
365.25

)
+βi ,j cos

(
2πj · t
365.25

)
, (1)

where yi (t) represents daily maximum temperature from 1961 to 2010, µi is the
intercept, ωi is the linear trend and αi ,j and βi ,j represent the Fourier coefficients.5

Equation (1) is evaluated individually at each grid point i = 1, . . .,N. Then, the months
from June to September are selected because we are interested in summer heat
periods.

In this study, we define a heat period for E-OBS observational data as a time
range when the anomaly maximum temperature exceeds a threshold of 3K at five10

consecutive days at least, and additionally includes not less than 20% of the grid points
in the area of interest. This choice has been made to observe events frequently enough
for reliable statistics while simultaneously ensuring important impacts. To account for
the inherent model bias it is essential to adjust the temperature threshold to the
model climate. Thus, we estimate the percentile P3 K corresponding to the 3K E-15

OBS threshold for the complete time from 1961 to 2010 and the area of interest.
Accordingly, we use this percentile as the threshold for heat periods for the model
data. Table 1 shows this threshold in K for the 8 Prudence regions, estimated from the
CCLM ensemble means. As could be expected, the threshold is higher for low latitudes.

Following our aim to use a network measure as a heat period estimator we construct20

a complex network from the daily maximum temperature model data. Here we use an
undirected and unweighted simple approach. Thus, the network consists of vertices
V , which are the spatial grid points of our temperature data, and edges (connections)
E , which are added between vertices and represent the statistical interdependence
between the anomaly daily maximum temperature time series. This complex climate25
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network can be represented by the symmetric adjacency matrix A with:

Ai j =

{
0 if i j not connected

1 if i j connected
, (2)

where i and j represent the vertices, i.e. time series at grid points i , j = 1, . . .,N.
Two grid points are connected if the correlation between their time series exceeds
a predefined threshold. The statistical interdependence between pairs {i j} (self-5

loops {i i} are not allowed) of time series is measured using the Pearson (standard)
correlation coefficient (Donges et al., 2009). From sensitivity studies we found that
correlations between time series in the order of 0.7–0.9 yield acceptable results.
That means that using these thresholds, we observe patterns with not too few and
not to many connections. This is important in order to resolve temporal dynamics10

of the network. However, since we want to analyze different regions in Europe and
to generate comparable results we decided to alternatively create our networks with
a constant edge density (ratio of number of actual connections to maximum number of
connections) of

ρ = E
/( N

2

)
= 〈ki 〉/(N −1) = 0.3 , (3)15

where E is the number of edges and 〈ki 〉 is the mean node degree with

ki =
N∑
j=1

Ai j , (4)

which gives the number of connections of a vertex i .
We implemented an iterative correlation threshold adaption method, which creates

networks for each area in Europe and each year with a constant edge density of ρ =20

0.3±0.0005.
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In a similar way as Berezin et al. (2012) we analyze the temporal variation of the link
strength Wτ, i.e the correlation threshold between time series (grid points) for a single
year τ (summer) from 1961 to 2010. Thus, instead of using the node degree as an
estimator of heat periods we use the link strength Wτ.

Using the definitions above, we finally construct a network for the summer months of5

each year based on anomaly maximum temperature model data. The quantity whose
year-to-year variation we are interested in is the link strength Wτ; however, since we
are interested in decadal variability, and since we do not expect the model to represent
the year to year fluctuations, we applied a 10 year moving average filter to the data.
Since the CCLM model has been initialized every decade (1961, 1971,..., 2001) we10

apply the filter only within a decade in order to avoid transferring information between
decades.

To quantify the prediction skill, we calculate the absolute mean difference between
E-OBS heat periods o and CCLM heat periods m and CCLM link strength Wτ. To be
comparable we normalized the time series to the range {0,1} by a subtraction of the15

minimum of the time series and accordingly a devision by the maximum for the whole
time span, e.g.

mr
d ,τ =

(
mr
d ,τ −min50

τ=1

(
mr
d ,τ

))/
max50

τ=1

(
mr
d ,τ −min50

τ=1

(
mr
d ,τ

))
. (5)

Thus the absolute mean difference between heat periods for a region r and a decade
d is given by20

Mr
d (m) =

∣∣∣∣∣ 1
10

10∑
τ=1

(
ord ,τ −m

r
d ,τ

)∣∣∣∣∣ = |ord −mr
d | , (6)

and the mean difference between heat periods and link strength is

Mr
d (W ) =

∣∣∣∣∣ 1
10

10∑
τ=1

(
ord ,τ −W

r
d ,τ

)∣∣∣∣∣ = |ord −W r
d | , (7)
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where τ represents the years within a decade and the bars in the above equations
denote temporal averages. Thus, if the absolute mean difference is about 0,
observations and model agree well, whereas a difference of about 1 denotes the
maximum discrepancy.

4 Results5

Figure 4 shows that the link strength Wτ is a suitable estimator of heat periods for
France (Prudence region 3). Figure 4 depicts the number of observed heat periods
(solid line) and the corresponding link strength (dashed line) retrieved from the complex
evolving network, both from E-OBS data. Figure 4 shows that the network contains
climate information in the sense that the dynamics of the link strengthWτ is very similar10

to the dynamics of heat periods, both based on the same data. So, the link strength
can here be considered as equivalent to the standard heat period estimator.

Prudence region 5 (Scandinavia) is a region where the network method performs
better than the standard method (Figs. 5 and 6). Figure 5 shows the E-OBS number
of heat periods (black) and the CCLM ensemble mean number of heat periods (blue)15

for France together with the interquartile range (25th and 75th percentiles) IQR. As
can be seen, the model cannot follow the observational reference, especially from
1970–2010, well. By contrast, the CCLM link strength, shown in Fig. 6 (red) follows
the decadal variability of the E-OBS heat periods dynamics well. Thus, in this case
the network measure is the better heat period estimator. In order to see how the20

prediction skill of the standard as well as the network heat period estimators vary with
the region considered, we performed the same analysis as above for the 8 Prudence
regions in Europe and for the 1960s, 1970s, 1980s, 1990s and 2000s. To summarize
our results we calculated as the prediction skill the absolute mean difference within
a decade between E-OBS heat periods and CCLM heat periods (Eq. 6) and E-OBS25

heat periods and CCLM link strength (Eq. 7) based on normalized time series. The
prediction skill “M” is also included in Figs. 5 and 6. Figure 7 shows which method
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performs better regarding the 8 regions (columns) and 5 decades (rows). Blue color in
Fig. 7 indicates that the network approach performs better (Mr

d (W ) <Mr
d (m)) and red

color stands for a better performance of the standard method (Mr
d (W ) >Mr

d (m)). White
boxes in Fig. 7 denote a tie between the methods in the case of too small differences
(|Mr

d (W )−Mr
d (m)| ≤ 0.05). Interpreting the matrix of Fig. 7 we conclude that the network5

method is superior in 3 regions (4, 5, 6), the standard approach is superior in 2 regions
(3, 8) and in 3 regions (1, 2, 7) we observed a tie, i.e. no clear result.

5 Conclusions and outlook

We presented a novel approach examining climate predictions using a complex
network analysis. We have investigated the predictability of the slow dynamics of10

the occurrence of heat periods in Europe based on daily maximum near-surface
temperature data.

We found that the network approach has similar skill as the standard method and has
the potential to improve the predictability of heat periods for some European regions.
Picking up our hypothesis and simplified argumentation from Sect. 3, the crucial point15

why we detect heat periods with the network link strength is that heat periods are
cooperative events in space and time. Thus, the link strength can be used as an
estimator of heat periods. The drawback of the standard method is most probably the
inflexible threshold for the detection of heat periods (cf. Fig. 2). If the climate model
contains the signal of a heat period, but with a slightly too small amplitude, the threshold20

will not be crossed and no heat period will be detected. In contrast, the complex climate
network does not depend on such fixed thresholds, and can use this information, which
makes it the more robust estimator of heat periods. At present, we have no explanation
for the dependence of the skill on the region.

The general prediction skill of climate in Europe using standard measures is still25

moderate. In this sense our work adds new aspects to our previous study (Mieruch
et al., 2014) and also the work of Eade et al. (2012) who found a strong variation of
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skill with region and decade. In essence, we found regions and decades in Europe
where our climate model output, or more specifically the used network estimator,
follows the slowly evolving dynamics of observed heat periods. We also found regions
and decades, where the network estimator is not able to represent the observational
reference.5

Concluding, our approach shows that the complex climate networks approach yields
meaningful climate information and can complement standard skill measures within the
framework of climate prediction. Furthermore, our study has given examples that the
complex climate network approach has the potential to improve climate predictions of
extremes.10

Several research questions remain and arise. From the network perspective it would
be interesting to analyze other network measures like clustering, similarities or path
lengths and how they are connected to climate evolution. Additionally, the incorporation
of other relevant variables like precipitation, wind or soil moisture into the network is
an appealing aspect. From a physical or climatological point of view it is important to15

understand why the network measures are able to represent climate dynamics, which
could also contribute to a better understanding of the sources of decadal predictability.

Thus, the incorporation and investigation of processes like the AMOC, PDO or NAO
together with complex networks and climate prediction might be an option for the future.
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Table 1. Ensemble mean variation of the temperature threshold calculated for heat periods in
CCLM data.

Prudence region 1 2 3 4 5 6 7 8

Temperature threshold (in K) 3.16 3.38 2.81 2.52 2.66 2.85 3.46 2.79
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Figure 1. The 8 Prudence regions. (Topography: ETOPO1, Amante and Eakins, 2009.)
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Figure 2. Schematical illustration of our approach (temperature anomaly on the y axis):
(a) model detects correctly one heat period above the threshold, (b) model underestimates
the number of heat periods, (c) model overestimates the number of heat periods (details see
text).
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Figure 3. (a) Artificial time series including 3 heat periods (dashed lines). (b) Relation between
the network link strength and the number of heat periods, based on 100 artificial time series.
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Figure 4. Number of heat periods (1961–2010) in France (Prudence 3) in summer from E-OBS
data (solid line) and corresponding E-OBS link strength (dashed line).
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Figure 5. Number of heat periods (1961-2010) in Scandinavia in summer from E-OBS (black)
and CCLM number of heat periods (blue: ensemble mean and interquartile range). The “M’s”
denote the absolute mean difference within a decade between E-OBS and the CCLM ensemble
mean after normalization.
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Figure 6. Number of heat periods (1961-2010) in Scandinavia in summer from E-OBS (black)
and CCLM link strength or correlation threshold (red: ensemble mean and interquartile range).
The “M’s” denote the absolute mean difference within a decade between E-OBS and the CCLM
ensemble mean after normalization.
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Figure 7. Rank matrix of the performance of the two methods. Blue: network approach performs
better, red: standard approach performs better, white: tie.

1505

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1481/2015/npgd-2-1481-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1481/2015/npgd-2-1481-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Data
	Method
	Results
	Conclusions and outlook

